How to create EPICS device support for a simple serial or GPIB
device

W. Eric Norum
October 22, 2007

1 Introduction

This tutorial provides step-by-step instructions on howrate EPICS support for a simple serial or GPIB (IEEE-488)
device. The steps are presented in a way that should makssthpe to apply them in cookbook fashion to create
support for other devices. For comprehensive descriptiall dhe details of the 1/0 system used here, refer to the
asynDriver and devGpib documentation.

This document isn't for the absolute newcomer though. Yosthave EPICS installed on a system somewhere and
know how to build and run the example application. In paticyou must have the following installed:

EPICS R3.14.6 or higher.

EPICS modules/soft/asyn version 4.0 or higher.

Serial and GPIB devices can now be treated in much the sameTimyEPICS 'asyn' driver devGpib module can
use the low-level drivers which communicate with serialides connected to ports on the IOC or to Ethernet/Serial
converters or with GPIB devices connected to local I/O carde Ethernet/GPIB converters.

| based this tutorial on the device support | wrote for a CVsémCorporation AB300 lter wheel. You're almost
certainly interested in controlling some other device sa ymn't be able to use the information directly. | chose
the AB300 as the basis for this tutorial since the AB300 hasrg kmited command set, which keeps this document
small, and yet has commands which raise many of the issuegdbdl have to consider when writing support for
other devices.

2 Determine the required I/O operations

The rst order of business is to determine the set of openatihe device will have to perform. A look at the AB300
documentation reveals that there are four commands thdtbeusipported. Each command will be associated with
an EPICS process variable (PV) whose type must be apprepoidhe data transferred by the command. The AB300
commands and process variable record types | choose taatesaith them are shown in table 1.

There are lots of other ways that the AB300 could be handlédnidght be useful, for example, to treat the lter
position as multi-bit binary records instead.

3 Create a new device support module

Now that the device operations and EPICS process variapéstiiave been chosen it's time to create a new EPICS
application to provide a place to perform subsequent sofwavelopment. The easiest way to do this is with the
makeSupport.pl script supplied with the EPICS ASYN package

Table 1: AB300 Iter wheel commands

CVI Laser Corporation AB300 Iter whee
Command EPICS record type
Reset longout
Go to new position| longout
Query position longin
Query status longin
Here are the commands | ran. You'll have to change the to the path where your

EPICS ASYN driver is installed.

mkdir ab300
cd ab300
/home/EPICS/modules/soft/asyn/bin/linux-x86/makeSygort.pl -t devGpib AB300

3.1 Make some changes to the les in con gure/

Edit the le which makeSupport.pl created and con rm that the ergrékescribing the paths to
your EPICS base and ASYN support are correct. For exampée tméght be:

Edit the le which makeSupport.pl created and specify the IOC amattitres on which the appli-
cation is to run. I wanted the application to run as a soft I&J,uncommented the
de nition and set the de nition to be empty:

3.2 Create the device support le

The contents of the device support le provide all the dstail the communication between the device and EPICS.
The makeSupport.pl command created a skeleton device qufgpm . Of course, device
support for a device similar to the one you're working witloyides an even easier starting point.

The remainder this section describes the changes that | tnabe skeleton le in order to support the AB300 Iter
wheel. You'll have to modify the steps as appropriate forrydevice.

3.2.1 Declare the DSET tables provided by the device support

Since the AB300 provides only longin and longout recordstrobshe xxxde ne statements can be removed.
Because of the way that the device initialization is perfednyou must de ne an analog-in DSET even if the device
provides no analog-in records (as is the case for the AB300).

3.2.2 Select timeout values

The default value of (2 seconds) is reasonable for the AB300, but | increaseddhe\of to
5 seconds since the Iter wheel can be slow in responding.

3.2.3 Clean up some unused values

The skeleton le provides a number of example charactengtdarrays. None are needed for the AB300 so | just
removed them. Not much space would be wasted by just leakigrg tn place however.

3.2.4 Declare the command array

This is the hardest part of the job. Here's where you have toreghow to produce the command strings required to
control the device and how to convert the device response&iRICS process variable values.

Each command array entry describes the details of a sir@legération type. The application database uses the index
of the entry in the command array to provide the link betwédengrocess variable and the 1/0 operation to read or
write that value.

The command array entries | created for the AB300 are shotawb&he elements of each entry are described using
the names from the GPIB documentation.

Command array index 0 — Device Reset

dset This command is associated with an longout record.

type A WRITE operation is to be performed.

pri This operation will be placed on the low-priority queue @ kequests.
cmd Because this is a GPIBWRITE operation this element is unused.

format The format string to generate the command to be sent to thieedeWhe rst two bytes are the RESET
command, the third byte is the ECHO command. The AB300 seadssponse to a reset command so | send
the 'ECHO' to verify that the device is responding. The AB3@8ets itself fast enough that it can see an echo
command immediately following the reset command.

Note that the process variable value is not used (there'srin¢f p format character in the command string).
The AB300 is reset whenever the EPICS record is processed.

rspLen The size of the readback buffer. Although only one readbatk ts expected | allow for a few extra bytes
justin case.

msgLen The size of the buffer into which the command string is pladedlowed a little extra space in case a longer
command is used some day.

convert No special conversion function is needed.
P1,P2,P3There's no special conversion function so no arguments eeded.

pdevGpibNames There's no name table.

eos The end-of-string value used to mark the end of the readbpetation. GPIB devices can usually leave this entry
NULL since they use the End-Or-ldentify (EOI) line to deltmiessages.Serial devices which have the same
end-of-string value for all commands couldalso leave tlegges NULL and set the end-of-string value with
theiocsh asynOctetSetlnputEos command.

Command array index 1 — Go to new lter position

dset This command is associated with an longout record.

type A WRITE operation is to be performed.

pri This operation will be placed on the low-priority queue @ kequests.
cmd Because this is a GPIBWRITE operation this element is unused.

format The format string to generate the command to be sent to thieedébhe Iter position (1-6) can be converted
to the required command byte with the printf format.

rspLen The size of the readback buffer. Although only two readbagk$are expected | allow for a few extra bytes
justin case.

msgLen The size of the buffer into which the command string is pladedlowed a little extra space in case a longer
command is used some day.

convert No special conversion function is needed.
P1,P2,P3There's no special conversion function so no arguments eeded.
pdevGpibNames There's no name table.

eos The end-of-string value used to mark the end of the readbpekation.

Command array index 2 — Query Iter position

dset This command is associated with an longin record.
type A READ operation is to be performed.
pri This operation will be placed on the low-priority queue @ lequests.

cmd The command string to be sent to the device. The AB300 resporttlis command by sending back three bytes:
the current position, the controller status, and a terrmgat

format Because this operation has its own conversion functiorefleimient is unused.
rspLen There is no command echo to be read.

msgLen The size of the buffer into which the reply string is placedthaugh only three reply bytes are expected |
allow for a few extra bytes just in case.

convert There's no sscanf format that can convert the reply from tB8@0 so a special conversion function must be
provided.

P1,P2,P3The special conversion function requires no arguments.
pdevGpibNames There's no name table.
eos The end-of-string value used to mark the end of the read tpera

Command array index 3 — Query controller status This command array entry is almost identical to the previous
entry. The only change is that a different custom converkianotion is used.

3.2.5 Write the special conversion functions

As mentioned above, special conversion functions are reeeahvert reply messages from the AB300 into EPICS PV
values. The easiest place to put these functions is justd#fe table. The conversion functions are passed
a pointer to the structure and three values from the command table entry. The structure contains

a pointer to the EPICS record. The custom conversion functses this pointer to set the record's value eld.

Here are the custom conversion functions | wrote for the AB30

Some points of interest:

1. Custom conversion functions indicate an error by retgnil.
2. If an error status is returned an explanation should héné¢fie buffer.

3. | putin a sanity check to ensure that the end-of-stringadtar is where it should be.

3.2.6 Provide the device support initialization

Because of way code is stored in object libraries on diffesystems the device support parameter table must be
initialized at run-time. The analog-in initializer is ustdperform this operation. This is why all device supportsle
must declare an analog-in DSET.

Here's the initialization for the AB300 device support. TRB300 immediately echos the command characters sent
to it so the respond2Writes value must be set to 0. All the othleres are left as created by the makeSupport.pl script:

3.3 Modify the device support database de nition le

This le speci es the link between the DSET names de ned ir ttlevice support le and the DTYP elds in the
application database. The makeSupport.pl command createdample le in . If you
removed any of the xxxde nitions from the device support le you must remove themsponding lines from
this le.

3.4 Create the device support database le

This is the database describing the actual EPICS proceisbhles associated with the Iter wheel.
I modi ed the le to have the following contents:

Notes:

1. The numbers following thein the INP and OUT elds are the number of the “link' used to coomicate with
the Iter wheel. This link is set up at run time by commandstie eipplication startup script.

2. The numbers following the in the INP and OUT elds are unused by serial devices but masi balid GPIB
address (0-30) since the GPIB address conversion routhezk ¢he value and the diagnostic display routines
require a matching value.

3. The numbers following the in the INP and OUT elds are the indices into the GPIB commarrdya
4. The DTYP elds must match the names speci ed in the devAB80d database de nition.
5. The device support database follows the ASYN conventiahthe macros $(P), $(R), $(L) and $(A) are used

to specify the record name pre xes, link number and GPIB adslrrespectively.
3.5 Build the device support
Change directories to the top-level directory of your de\sapport and:
make

(gnumakeon Solaris).

If all goes well you'll be left with a device support librarg lib/<EPICS_HOST_ARCH a device support database
de nition in dbd/ and a device support database in db/.

4 Create atest application

Now that the device support has been completed it's timedatera new EPICS application to con rm that the device
support is operating correctly. The easiest way to do thigtls the makeBaseApp.pl script supplied with EPICS.

Here are the commands | ran. You'll have to change the to the path to where your EPICS base is
installed. If you're not running on Linux you'll also have thange all the to re ect the architecture you're
using (, etc.). | built the test application in the same <top> as thda support, but

the application could be built anywhere As well, | built #ygplication as a 'soft' IOC running on the host machine,
but the serial/GPIB driver also works on RTEMS and vxWorks.

cd ab300
/home/EPICS/base/bin/linux-x86/makeBaseApp.pl -t ioc B300
/home/EPICS/base/bin/linux-x86/makeBaseApp.pl -i -t i© AB300

linux-x86

5 Using the device support in an application

Several les need minor modi cations to use the device suppothe test, or any other, application.

5.1 Make some changes to con gure/RELEASE

Edit the le which makeBaseApp.pl created and con rm that the EPIB8SE path is correct.
Add entries for your ASYN and device support. For examplsémight be:

5.2 Modify the application database de nition le

Your application database de nition le must include thetalaase de nition les for your instrument and for the
ASYN drivers. There are two ways that this can be done:

1. If you are building your application database de nitioarh anxxx le you include the additional
database de nitions in that le. For example, to add supgortthe AB300 instrument and local and remote
serial line drivers:

2. If you are building your application database de nitisorh the application Make le you specify the additional
database de nitions there:

xxx_DBD += base.dbd

xxx_DBD += devAB300.dbd
xxx_DBD += drvAsynIPPort.dbd
xxx_DBD += drvAsynSerialPort.dbd

5.3 Add the device support libraries to the application

You must link your device support library and the ASYN suppdrary with the application. Add the following lines

XXX
XXX

before the
XXX

line in the application

5.4 Modify the application startup script

The application startup script created by the makeBaseApprjgteeds a few changes to get the application
working properly.

1. Load the device support database records:

(if using the vxWorks shell)

2. Set up the 'port’ between the IOC and the lter wheel.

If you're using an Ethernet/RS-232 converter or a devicecWwliommunicates over a telnet-style socket
connection you need to specify the Internet host and porteurike:

If you're using a serial line directly attached to the 10C ymeed something like:

If you're using a serial line directly attached to a vxWork3Q you must rst con gure the serial port
interface hardware. The following example shows the condsda con gure a port on a GreenSprings
UART Industry-Pack module.

In all of the above examples the rst argument of the con ganed set port option commands is the link

identi er and must match the value in the EPICS database record INP and OUT elds. Thersktaogument

of the con gure command identi es the port to which the cootien is to be made. The third argument sets
the priority of the worker thread which performs the I/O ag@ns. A value of zero directs the command to
choose a reasonable default value. The fourth argumentigadirect the device support layer to automatically
connect to the serial port on startup and whenever the smiabecomes disconnected. The nal argument is
zero to direct the device support layer to use standard &sthing processing on input messages.

3. (Optional) Add lines to control the debugging level of gerial/GPIB driver. The following enables error
messages and a description of every I/O operation.

A better way to control the amount and type of diagnostic otigpto add an asynRecord to your application.

5.5 Build the application

Change directories to the top-level directory of your agation and:
make

(gnumakeon Solaris).
If all goes well you'll be left with an executable program imBinux-x86/AB300.

5.6 Run the application

Change directories to where makeBaseApp.pl put the apiplicatartup script and run the application:

cd iocBoot/iocAB300
..1../bin/linux-x86/AB300 st.cmd

10

Check the process variable names:

dbl

Reset the Iter wheel. The values sent between the I0C andttéraevheel are shown:

dbpf AB300:FilterWheel:reset 0

Read back the Iter wheel position. The dbtr command prihtsrecord before the I/O has a chance to occur:

dbtr AB300:FilterWheel:fbk

Now the process variable should have that value:

dbpr AB300:FilterWheel:fbk

Move the wheel to position 4:

dbpf AB300:FilterWheel 4

Read back the position:

11

dbtr AB300:FilterWheel:fbk

And it really is 4:

dbpr AB300:FilterWheel:fbk

6 Device Support File

Here is the complete device support le for the AB300 Iter il (

12

13

7 asynRecord support

The asynRecord provides a convenient mechanism for céingahe diagnostic messages produced by asyn drivers.
To use an asynRecord in your application;

1. Add the line

to an application

2. Create the diagnostic record by adding a line like

cd $(ASYN) (cd ASYN if using the vxWorks shell)

to the application startup () script. The value must match the the value in the corresponding
or command. The value should be that of
the instrument whose I/O you wish to monitor. Thand values are arbitrary and are concatenated together

14

to form the record name. Choose values which are unique aalbr@Cs on your network.

To run the asynRecord screen, acikynTop to your environment variable and start
medm with , and values matching those given in the command:

8 Support for devices with common 'end-of-string' characters

Devices which use the same character, or characters, toth@dnd of each command or response message need not
specify these characters in the GPIB command table enffiesy can, instead, specify the terminator sequences as
part of the driver port con guration commands. This makgso$sible for a single command table to provide support
for devices which provide a serial or Ethernet interfacal (@quire command/response terminators) and also provide
a GPIB interface (which does not require command/resparagrators).

For example, the con guration commands for a TDS3000 digitzilloscope connected through an Ethernet serial
port adapter might look like:

The con guration command for the same oscilloscope coratett an Ethernet GPIB adapter would be:

An example command table entry for this device is shown beldutice that there is no at the end of the command
and that the table 'eos' eld is

15

	Introduction
	Determine the required I/O operations
	Create a new device support module
	Make some changes to the files in configure/
	Create the device support file
	Modify the device support database definition file
	Create the device support database file
	Build the device support

	Create a test application
	Using the device support in an application
	Make some changes to configure/RELEASE
	Modify the application database definition file
	Add the device support libraries to the application
	Modify the application startup script
	Build the application
	Run the application

	Device Support File
	asynRecord support

